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Early Experiences with Node-Level Power Capping
on the Cray XC40 Platform

Kevin Pedretti, Stephen L. Olivier,
Kurt B. Ferreira
Center for Computing Research
Sandia National Laboratories
{ktpedre, slolivi, kbferre}@sandia.gov

ABSTRACT

Power consumption of extreme-scale supercomputers has be-
come a key performance bottleneck. Yet current practices do
not leverage power management opportunities, instead run-
ning at “maximum power”. This is not sustainable. Future
systems will need to manage power as a critical resource,
directing it to where it has greatest benefit. Power capping
is one mechanism for managing power budgets, however its
behavior is not well understood. This paper presents an
empirical evaluation of several key HPC workloads running
under a power cap on a Cray XC40 system, and provides a
comparison of this technique with p-state control, demon-
strating the performance differences of each. These results
show: 1.) Maximum performance requires ensuring the cap
is not reached; 2.) Performance slowdown under a cap can
be attributed to cascading delays which result in unsynchro-
nized performance variability across nodes; and, 3.) Due to
lag in reaction time, considerable time is spent operating
above the set cap. This work provides a timely and much
needed comparison of HPC application performance under
a power cap and attempts to enable users and system ad-
ministrators to understand how to best optimize application
performance on power-constrained HPC systems.

Keywords
Power Capping, Power Management, HPC

1. INTRODUCTION

The power consumption of supercomputers is becoming
one of the key bottlenecks limiting performance. Yet cur-
rent practice in operating large-scale systems does not make
use of power management opportunities. Instead, these sys-
tems are operated at their “maximum power” configuration
continuously, often with little performance benefit [16]. As
facility power limits are reached, both in terms of energy pro-
curement budgets and power delivery infrastructure, system-
level power budgets, rather than available hardware will
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likely become the primary constraints on performance [21].
A key challenge is to develop effective techniques for direct-
ing the available power budget — a scarce resource — to the
places in the system where it will have the greatest perfor-
mance benefit.

One promising technique for managing power budgets is
node-level power capping. This form of power capping al-
lows system software, such as a power aware workload man-
ager, to decide how much of the system’s power budget to
allocate to each compute node in the system. Hardware
can then enforce this cap using a variety of power manage-
ment techniques (e.g., reducing CPU frequency, clock gat-
ing, etc). Assuming a robust system-wide implementation,
node-level power capping enables each node’s power head-
room (PeakRated Power — PowerCap) to be reclaimed and
reallocated somewhere else in the system without fear of
exceeding hard power limits.

This paper presents an empirical evaluation of node-level
power capping on a Cray XC40 system, one of the first HPC
platforms with vendor-provided support of this kind. Cray
has developed an infrastructure around Intel’s Node Man-
ager [15] to enable workload managers and other privileged
software to set node-level power caps on groups of compute
nodes, for example nodes used in a particular job. The Node
Manager instance running on each compute node maintains
the desired power cap, which for our test system involves
making power control decisions for the two Haswell proces-
sors in each node. RAPL [23], in contrast, manages power
budgets within a single processor. The performance implica-
tions of node-level power capping for HPC workloads is not
well understood, which provided motivation for this study.
Specifically, this work demonstrates the following contribu-
tions:

e We present an empirical evaluation of several key HPC
workloads running at scale under a power cap on a
Cray XC40 system, one of the first HPC platforms
with this functionality.

e We compare the application performance of two power
management techniques, node-level power capping and
p-state control, demonstrating the performance differ-
ences of each.

o We demonstrate that the independent, per-node power
capping mechanism currently used on the XC40 can
lead to poor scalability for some workloads due to un-
synchronized performance variability across nodes.



e We contrast the behavior of benchmarks versus pro-
duction applications under power control mechanisms.
In many scenarios, HPL differs significantly from the
applications we evaluated, while HPCG demonstrates
key performance similarities.

e We observe that a non-trivial period of time is spent
operating above the specified power cap for our work-
loads. This limits the utility of node-level power cap-
ping with tight system-level power constraints (e.g., if
all nodes exceed their power caps simultaneously).

e Lastly, we offer prescriptive advice for users and sys-
tem operators on how to effectively use the node-level
power capping mechanisms found the XC40.

The remainder of this paper in organized as follows: Sec-
tion [2] outlines the two power control methods: node-level
power capping and P-state control. Section [3| describes the
evaluation procedure and the workloads used. Section [] de-
tails the empirical results with related work following next
in Section [5} We wrap up with conclusions and prescriptive
advice to users and system operators in Section [6

2. CRAY XC40 POWER MANAGEMENT

Our evaluation is performed on a 100 node Cray XC40 sys-
tem at Sandia National Laboratories called Mutrino. Mutrino
is an Application Readiness Testbed (ART) for the upcom-
ing 404+ PF Trinity platform, which will consist of over
19,000 compute nodes. Mutrino is in effect a mini-Trinity
that has all of the functional components of Trinity — I/O
nodes, compute nodes, burst buffer nodes, water cooling in-
frastructure, identical “Haswell” processors, etc. — but at a
smaller scale.

The XC40 provides two mechanisms to control power draw:
P-state control and node-level power capping. The P-states,
CPU performance states, are voltage-frequency pairs that
set the speed and power consumption of a computation.
Due to the fact that frequency is lowered in tandem with
the voltage, the lower frequency may result in degraded per-
formance of the application. Node-level power capping is a
relatively new mechanism that allows a power budget to be
set for each compute node in the system [7]. As we compare
the performance of each of these methods, we describe them
in detail in the following sections.

2.1 Node-level Power Capping

The XC40 system power capping mechanism attempts to
keep the node’s power usage at or below a set power level.
On-node firmware monitors draw and makes decisions based
on an unspecified sliding time window. If a node’s power
usage begins to exceed its power cap, the node is throttled
to a lower performance level — e.g., by running at a lower
P-state or performing clock gating — until the node’s power
usage falls below the power cap for an unspecified period of
time. Node-level power capping in Mutrino is implemented
using the Intel Node Manager firmware [I5]. Each Node
Manager instance operates autonomously and independently
with no cross-node coordination.

Activating a power cap is a privileged operation. Cray
provides a set of command line utilities that allows sys-
tem administrators to set up and activate power cap pro-
files on sets of compute nodes. Additionally, Cray devel-
oped a RESTful web API called CAPMC [20] that enables

privileged system services, such as the workload manager,
to perform power capping from remote locations. Work-
load managers can use the CAPMC interface to get power
usage information (e.g., how often the nodes in a job are be-
ing throttled) and then dynamically adapt power cap levels.
Whether power capping functionality is accessed directly or
via CAPMC, activating and modifying power caps is a rel-
atively expensive operation. We measured an average time
of 6.62 s to activate a node-level power cap on all 100 nodes
of Mutrino (25 trials, o = 0.256).

Internally the power cap utilities send “Set Power-Cap”
commands to each of the targeted compute nodes via the
Ethernet monitoring and control network in the system.
Intel’s Node Manager firmware continuously monitors the
power usage of each node and its two Haswell processors
and makes dynamic power management control decisions —
such as changing CPU P-states — to maintain the desired
power cap level. The exact details of how the node manager
implements power capping are proprietary and not disclosed
by Intel but our empirical results presented in Sectionpro—
vide some clues as to its operations. In particular, it is not
possible to change Intel Node Manager power capping con-
figuration parameters such as the unspecified time duration
used to calculate average power. This is a potential area for
future investigation.

Table [1| provides some example power cap profile config-
urations for Mutrino. Cray names its power cap levels in
terms of percentages, which represent the percentage within
the range of a node’s minimum and maximum power us-
age. For Mutrino, the minimum power required to operate
a compute node is 230 W and the maximum power is 415 W.
Thus, a 50% power cap level represents a 322 W power cap
in absolute terms. This setting of the power cap percentage
level is the only configuration option exposed to the user.

Table 1: Example Power Caps for Mutrino

Cray Power Cap Savings Savings
Power Cap Per-Node | Potential Potential
Setting (Watts) (Watts) | (Percentage)
No Cap ~ 415 W N/A N/A
75% 369 W 46 W 11%
50% 322 W 93 W 22%
25% 276 W 139 W 33%
0% 230 W 185 W 45%

2.2 Job-level P-state Selection

P-state selection on the XC40 is static and done at ap-
plication launch time. P-states are named after the associ-
ated clock frequencies. If a user knows that their particu-
lar application will not benefit from running at the default
“maximum performance” P-state setting, they can choose to
manually select a lower P-state at launch-time. Currently,
P-state selection is done for all cores within each node and
this setting cannot be dynamically changed while an appli-
cation is running.

Table [2] lists several of the available P-states for Mutrino,
along with the percentage of peak performance. The partic-
ular Intel processors used in this node operate at a maximum
base frequency of 2.3 GHz and a minimum clock frequency
of 1.2 GHz. At all P-states except for 2301000, the proces-
sors operate at the fixed frequency shown in the table. The



2301000 P-state enables Intel’s “Turbo Boost” feature, which
allows the processor’s clock frequency to scale up from the
2.3 GHz base up to a maximum of 3.6 GHz, depending on
factors such as the number of cores active and the currently
available thermal headroom.

Table 2: Example P-states for Mutrino

Cray P-state Clock Frequency | Percent
Name (GHz) | of Peak
2301000 2.3-3.6 (Turbo On) | > 100%
2300000 2.3 100%
2000000 2.0 87%
1900000 1.9 83%
1800000 1.8 78%
1600000 1.6 70%
1400000 1.4 61%
1200000 1.2 52%

3. APPROACH

This section describes the MPI workloads and testing pro-
cedures used in this study.

3.1 Workloads

We evaluated two MPI benchmarks, High Performance
Linpack (HPL) [2] and High Performance Conjugate Gradi-
ent (HPCG) [13], and two real MPI applications, the CTH
hydro code [8] and S3D combustion code [6]. Test problems
for each benchmark were configured for weak scaling from 1
to 96 nodes, with 32 MPI processes per node (a maximum
of 3072 MPI processes).

HPL and HPCG are from the Top500 [3] suite and rep-
resent different extremes in a spectrum of application be-
havior. HPL is highly compute bound, consisting of a dense
LU factorization with O(n®) compute operations for O(n?)
data movement. The problem size for HPL was chosen to
use about 24 GB of memory per node, scaled from N=56,000
for 1 node to N=549,000 for 96 nodes.

HPCG, in contrast, is highly memory bound, consisting
primarily of low computational intensity operations like sparse
matrix-vector products. HPCG was configured with the de-
fault 104x104x104 problem, using about 950 MB per MPI
process (30 GB per node). To ensure that the same amount
of work was done for all test configurations at a given scale,
HPCG was modified slightly to run for a fixed number of
iterations rather than a fixed time period.

CTH is a multi-material, large deformation, strong shock

wave, solid mechanics code that uses a Eulerian finite-difference

method. CTH performs a series of timesteps, and each
timestep consists of several nearest neighbor exchanges of
ghost zones and Allreduce collectives. The test problem
used for CTH was a shaped-charge explosive simulation dis-
cretized on a 3-D rectangular mesh. This problem required
about 1.5 GB per process (50 GB per node), with perfor-
mance primarily bound by memory and network bandwidth.

S3D performs a numerical simulation of turbulent combus-
tion using an explicit Runge-Kutta method. S3D was con-
figured for 48° gridpoints per node using an n-heptane/air
chemical model with 52 transported species, 16 quasi-steady
state species, and 283 chemical reactions. This configuration
was chosen to be representative of the types of problems used

in production S3D calculations. S3D is primarily network
bound, with the dominant communication pattern being 3-
D nearest-neighbor exchanges of ghost zones. MPI topology
mapping was performed to place a compact mini-box of the
overall problem on each node, minimizing off-node commu-
nication.

3.2 Testing Procedure

Power capping experiments were performed on Mutrino
during dedicated time with no other users on the system.
During each test window, a power cap setting was selected
from Table [I| and installed on every compute node. Once
the power cap was active, each benchmark was executed
three times at each of the p-state settings in Table [2| at
scales of 1, 8, 32, 64, and 96 nodes (32, 256, 1024, 2048,
and 3072 MPI processes). Three trials were performed for
each (pcap, pstate,nodes) configuration and all tests were
performed with a 1-to-1 pinning of the 32 MPI processes
per node to the 32 physical cores per node.

Energy usage information for each run was obtained us-
ing Cray’s RUR (Resource Utilization Reporting) tool [4].
RUR records various statistics about each job that is run on
the system, including start time, end time, and total energy
consumed. The total energy consumed includes the proces-
sor and memory energy of all compute nodes in the runE|
We use this information to calculate the average power used
by each run across its entire execution.

In addition, we sampled each node’s power usage and core
0 frequency at 10 Hz using the Power API reference imple-
mentation [1]; Cray’s tools sample power at 1 Hz, which was
too coarse grained for our purposes. In order to minimize
disturbance, our first set of runs is performed without this
sampling. A second set of runs was performed for 96 node
cases only with 10 Hz sampling enabled. The performance
obtained with and without sampling was virtually identical,
indicating the 10 Hz sampling added negligible overhead.

4. RESULTS

This section describes our empirical evaluation of node-
level power capping.

4.1 Power Caps vs. P-States for Power Con-
trol

Figure [1| compares using power capping in isolation (left
column) to using p-state control in isolation (right column)
for 3072 MPI process runs on 96 nodes, which was the largest
scale tested. For power capping experiments, p-state was
held constant at Turbo (the system default) and the power
cap was varied. For p-state experiments, no power cap was
used (NoCap) and p-state was varied. Each data point in the
figure is the average of three trials. Error bars representing
minimum and maximum values are plotted but they are so
close to the average values that they cannot be seen.

Figures and show how performance is impacted
for each workload. Each workload’s performance at each
power cap or p-state setting is plotted relative to the work-
load’s baseline (Turbo, NoCap) performance, listed in Ta-
ble (higher relative performance is better). Figures[ldand

!The power input to each XC40 compute node is instru-
mented with an energy meter, so all downstream compo-
nents such as the processor sockets, DIMM slots, and chipset
are included in the measurement used by RUR. The Aries
network chip, which is shared by four nodes, is not included.



show the average power usage per node measured for each
configuration. The gray horizontal dashed lines in Figure
were added to help visualize the power cap levels. Lastly,
Figures and [Lf| show how energy efficiency is impacted.
As with the performance plots, each workload’s energy ef-
ficiency is plotted relative to its (Turbo, NoCap) baseline,
listed in Table 3| (higher relative energy efficiency is better).
Energy efficiency is calculated by dividing the performance
reported by a workload (i.e., as reported in its output) by
its measured average power usage.

There are several things to highlight in this comparison.
First and most obviously, the results in Figure indicate
that the node-level power capping implementation effectively
keeps average power draw below the cap. CTH, HPL, and
HPCG are all clearly being “capped” at a power cap set-
ting of 322W or below — their uncapped draw indicates they
would use more power if allowed. S3D shows similar behav-
ior, however its average power usage is well below its cap
until the 230W setting.

In terms of performance, Figure [la] shows that our work-
loads are mostly unaffected by a 369W cap, which is sup-
ported by their uncapped power usage being under this level
in Figure For tighter caps, all workloads begin to be af-
fected, in some cases achieving far less performance than
with p-states at a comparable power draw. S3D for exam-
ple, achieves performance under a 322W cap that is about
the same as performance with a 1.8 GHz p-state, though its
power draw is 47% greater. This translates into significantly
reduced energy efficiency for S3D under power capping com-
pared to p-state control, as seen in Figuresand HPCG
is significantly more impacted by power capping than p-state
control. Since HPCG is highly memory bound, this sug-
gests the power capping implementation throttles the mem-
ory subsystem while p-state control does not.

Turning to Figure for all workloads except HPL there
is a pronounced drop in power draw when moving from
Turbo to 2.3 GHz p-states. This indicates that the proces-
sors successfully overclock frequency beyond their 2.3 GHz
baseline. The p-states at 2.3 GHz and below disable this
ability, hence the drop in power draw. HPL’s power usage
does not fall off until below the 1.9 GHz p-state due to its
heavy use of AVX2 instructions, which cause the “Haswell”
processors used in our test system to reduce their clock fre-
quency to a 1.9 GHz baseline (baseline is 2.3 GHz for non-
AVX2 heavy code) in order to stay within power and ther-
mal limits [12]. HPL’s power usage with Turbo and 1.9 GHz
p-states is about the same, indicating that turbo is not in-
creasing clock frequencies beyond 2.3 GHz for HPL.

Looking more holistically at Figure [1} it is clear that the
workloads have different responses to the two complemen-
tary power management techniques. Some of the workloads,
such as S3D and HPCG, behave more predictably under p-
state control compared to power capping. In general, the en-
ergy efficiency improvements achieved with p-state control
are greater than using power capping. This is dramatically
true for S3D, which we investigate further in the following
section. The primary downside of p-state control is that
it does not provide the same level of “guarantee” on upper
bound power usage that power capping provides. Power cap-
ping attempts to maintain the cap for all workloads, and it
appears to do this well. With p-state control, applications
need to be profiled ahead of time to understand their power
usage behavior in order to choose the appropriate p-state.

It is likely that a combination of the two approaches will be
needed, which we explore in the next section.

Another important point shown by our results is how dif-
ferent HPL is from the other workloads. In particular, our
two real-applications, CTH and S3D, behave much more
similarly to HPCG than HPL. This suggests that HPL, while
commonly used, may not be the most appropriate bench-
mark to use for tuning the power management mechanisms
of future systems.

Table 3: Measured baseline performance values for
(Turbo, NoCap) for 3072 MPI process runs on 96 nodes

Workload Performance Energy Efﬁciencyiz |

CTH 0.14 Timesteps/s | 4.13E-6 Timesteps/J
S3D 5222 Gridpoints/s 0.175 Gridpoints/J
HPL 71710 GFLOPS 2.138 GFLOPS/W
HPCG 1040 GFLOPS 0.030 GFLOPS/W

4.2 Combining Power Capping and P-States

Figures show the performance of the four workloads
under different combinations of p-state and power cap con-
figurations. Each of the subfigures within each figure shows
results for a range of p-states from turbo mode down to
1.2 GHz under the same power cap. The number of nodes
is scaled from a single node up to 96 nodes.

HPL.

First consider the behavior of HPL. With no power cap
imposed (Figure , performance is similar for p-states at
and above 1.9 GHz, likely due to the Haswell’s automatic
throttling of AVX2- heavy execution mixes, as mentioned in
Section[2.2] Performance degrades at lower p-state settings,
and varies little as node count increases. Imposing a cap at
50% of the allowed capping range (Figure |2b)), reduces the
performance at high p-states for all node scales, while per-
formance at low p-states is not affected — their power usage
never reaches the 322 W cap. In between the effect is pro-
nounced: at a 1.8 GHz p-state, performance drops markedly
as node count increases, dipping close to the 1.6 GHz p-
state performance at 96 nodes. At the lowest allowed cap
of 230 W (Figure 2d), the 1.4 GHz p-state results show a
further decline.

HPCG.

Turning to the results for HPCG, we observe that perfor-
mance is relatively stable across p-states and node counts
under no cap (Figure and a 50% / 322 W cap (Fig-
ure [3b]). The similarity of the two graphs shows that regard-
less of p-state, HPCG’s memory-intensive operations do not
draw enough CPU power to reach a 322 W cap, unlike the
more compute-intensive HPL. At the most restrictive cap,
230 W (Figure , the p-states of 1.2 - 1.6 GHz are now
the worst performers. Moreover, the performance of these
p-states falls off sharply with increased node count under
this cap.

So far we have shown that benchmark performance un-
der a power cap varies depending on the combination of the

2GFLOPS/W is an energy efficiency metric: GFLOPS/W
= (Giga FLoating-point OPerations per Second)/(Joules per
Second) = (Giga FLoating-point OPerations)/J
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Figure 1: Static power cap selection (left column) vs. static p-state selection (right column) for 3072 MPI process runs.

wattage of the imposed power cap, the p-state frequency
setting, and the benchmark characteristics. To investigate
whether this behavior extends to full real-world MPI appli-
cations, we evaluate the performance of CTH and S3D under
the same set of power cap and p-state configurations.

CTH.

The results for CTH are given in Figure[d] and as before,
each subfigure shows performance under a different power
cap. Even with no cap imposed (Figure , there is a drop
in weak scaling performance with scale, a known character-
istic due to MPI communication costs in the application.
The imposition of the 50% / 322 W cap (Figure reduces
the performance of turbo mode executions slightly, but exe-
cutions at other p-states show unchanged performance com-
pared to the uncapped executions. Under the 0% / 230 W

cap (Figure , performance of executions at all p-states
above 1.6 GHz are nearly equivalent, as the system throt-
tles performance to stay under the power cap. The power
graphs for CTH (Figure show increased variability in
power usage for 8-32 node CTH executions at each configu-
ration. This variability is an artifact of the batch scheduler
running trials of these experiments at the same time on dif-
ferent sets of nodes, with differing part-to-part variability.
The 64 and 96 node executions were run on the same set of
nodes for each trial.

S3D.

Figure[5]shows the results for the different combinations of
power caps and p-states for S3D. In the absence of a power
cap (Figure , turbo mode gives the best performance,
with the other p-state settings showing steady performance
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Figure 3: HPCG Performance and Power Scaling Under Power Capping

decreases according to their relative frequencies. In all cases,
there is a performance drop from 1 to 8 nodes as commu-
nication costs are introduced, and a continued, more grad-
ual drop as node count increases further. With a 50% /
322 W cap (Figure running in turbo mode reaches the
cap and the resulting application performance decreases to
the same level as the 2.3 GHz p-state on the single node exe-
cution. Performance degradation worsens with node count —
on 96 nodes, turbo underperforms the 1.8 GHz p-state. Fi-
nally, under a 230 W cap (Figure, performance of turbo,
2.3, and 2.0 GHz p-states degrades below 1.6 GHz perfor-
mance, performance at the 1.9 GHz p-state begins to drop,

and the 1.2 - 1.6 GHz p-states maintain their same perfor-
mance. The power graphs for S3D (Figure show little
variability at each configuration, because unlike the CTH
executions, we were able to run all trials in dedicated mode
on the same sets of nodes.

4.3 Measured Power Usage

In order to understand the power characteristics of appli-
cations under a power cap, we analyzed the 10 Hz power
samples that were collected from all nodes during execution
using the Power API [I]. Figure |§| shows empirical cumu-
lative distribution functions (CDF) for the four workloads
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Figure 4: CTH Performance and Power Scaling Under Power Capping
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Figure 5: S3D Performance and Power Scaling Under Power Capping

running in turbo mode on 96 nodes under the different power
caps. The interpretation of the graphs is that for each point
(x,y) on one of the curves, y% of the samples are power
values at or below x Watts. Steep curves, like those in the
HPCG graph (Figure indicate that the power samples
show little variance. The slopes of the CDF curves for S3D
(Figure are much more gradual, showing a wider spread
of values among the power samples.

One effect that can be observed from the power samples
is how often the power caps are exceeded. Vertical dashed
lines on the CDF graphs mark the limits of each power cap
setting, and where they intersect the curves of the same

color, they delineate samples above and below the power
cap. Power capping on this system maintains average power
below the limit over a time window for each node, so for
periods shorter than that time window the power can fluc-
tuate above and below the power cap. In the case of CTH
(Figure under the stricter power cap settings, more than
half of the power samples exceed the power cap. The curves
are steep near the power cap lines, and many samples are
only slightly above the cap. However, a few of the sam-
ples are much higher than the imposed caps. Since this
system’s power caps are maintained over relatively short in-
tervals (one or a small number of seconds), capacitance in



the system should ensure no ill harm even if all nodes exceed
their caps in the same instant, but system operators should
nonetheless be aware of the possibility that transient power
can exceed the limits imposed by power capping.

That this power analysis would not be possible without
fine grained instrumentation underscores the need for pre-
cise power measurement tools to better understand system
behavior. Note that the 50% marks on the graphs indicate
the median values, but we also calculated the average of the
samples for each execution and node: These averages are al-
ways under the power cap. If the average were the only data
point that we had for each node and each trial, we would
not know about the transient excursions above the power
cap. Even if we had more measurements but at a granu-
larity coarser than the power capping window, the transient
behavior would still be obscured.

4.4 Analyzing Application Impact

The communication pattern in S3D is a nearest-neighbor
exchange. Similar to many collective operations like Allre-
duce, this pattern requires all nodes to finish their communi-
cation before the application can proceed. In fact, previous
work [10] has demonstrated that these nearest neighbor ex-
changes can have significant global slowdown even when a
small subset of nodes experience performance slow-downs.

To dive deeper into the effects of power capping on S3D,
we sampled the CPU frequency on each node of the machine
at 10 Hz intervals. Figure m shows sampled data from two
executions of S3D on 96 nodes under a 230 W power cap.
Each graph shows samples from ten nodes, one row per node.
Time proceeds from left to right across the x-axis. Each
point is colored based on its observed operating frequency in
KHz, as shown in the legend at rightEI Figureshows that
at p-state 1.8 GHz, a consistent CPU operating frequency
of 1.8 GHz is maintained throughout the execution, as the
power usage remains below the imposed power cap.

Figure[7b|demonstrates the very different behavior result-
ing from execution in turbo mode. Execution begins with
nodes running at high frequency. As power usage reaches the
cap, the CPU frequency is throttled. Throughout execution,
the frequencies vary quite widely, even down to 1.6 GHz. At
a particular point in time, some nodes are operating at a
high frequency while others are operating at lower frequen-
cies. The result for a tightly-coupled MPI application like
S3D is load imbalance, in which slower nodes hold back the
progress of faster nodes. As with load imbalance due to OS
noise [10], this significantly inhibits performance at scale.

S. RELATED WORK

Power capping has long been a topic of considerable inter-
est in the commercial data center and server space. Fan et al.
examine the theoretical potential of power capping and pro-
visioning for average power usage in large-scale datacenters,
e.g. at Google [9]. Lefurgy et al. implement power capping
in a blade server based on control theory methods [17]. Lo
et al. implement a system to limit power to the minimum
amount required to maintain search response times within
service level agreement terms [18].

Studies on power management for high-performance sci-
entific computing have recently been accelerated both by

3When in turbo mode, the system reports 2.301 GHz as the
frequency, even though the actual frequency can be higher.

the recognition that power will be a key constraint in future
HPC systems and by the availability of the Running Aver-
age Power Limit (RAPL) [14] feature for CPU-level power
limits in Intel SandyBridge processors. Rountree et al. show
that part-to-part variability in power efficiency characteris-
tics result in performance variability under a RAPL power
cap [23]. Patki et al. propose overprovisioning systems with
respect to power and allocating it based on application char-
acteristics rather than worst-case assumptions [2I]. Sarood
et al. demonstrate that adding additional low power nodes
to an execution may improve performance compared to run-
ning fewer high power nodes [25]. Porterfield et al. boost
power on processors that fall behind due to hardware per-
formance variability under a power cap [22]. Several power-
aware schedulers for HPC have been proposed [5} 27}, 24] [T9].
Related efforts to understand application and MPI power
characteristics include a single-node power capping exper-
iment of a magnetohydrodynamics application [II] and a
study of energy usage of MPI primitives on four nodes [26].

All studies listed above have used either simulation or 1-
64 nodes of “SandyBridge” or earlier processors, implement-
ing power capping through direct manipulation of RAPL.
In contrast, our study uses Intel’s newer “Haswell” proces-
sors, designed for more advanced power management, with
node-level power capping applied through Cray’s produc-
tion XC40 power management infrastructure, based on In-
tel’s Node Manager, to show production application impact
at up to 96-node scale for a wide range of p-state and power
cap combinations.

6. SUMMARY & CONCLUSIONS

Summary of Results.

In this work, we present an empirical evaluation of node-
level power capping on a Cray XC40 system, one of the first
HPC platforms with this vendor-supported power capping
capability. Using a number of key benchmarks and pro-
duction workloads, we demonstrate the performance of this
mechanism in comparison to the complementary technique
of p-state control. Overall our results show that p-state con-
trol leads to superior performance versus power capping for
many HPC workloads. The independent, per-node power
capping mechanism currently used on the XC40 leads to
poor scalability for some workloads due to unsynchronized
performance variability across nodes. Additionally, we show
that behavior of the HPL benchmark, currently used in the
top500 ranking, differs significantly from the production ap-
plications evaluated, while HPCG behaves similarly.

Advice to Users: Avoid the cap.

Overall, our work demonstrates the importance of avoid-
ing the power cap. With the rise of power capping on emerg-
ing HPC systems, application developers face the reality
that their application performance may be severely curtailed
if they are unable to ensure power draw does not exceed the
cap. Adjusting the p-state can be an effective mechanism
to do this. Unfortunately, the XC40 only exposes a static
p-state control. Since application power characteristics un-
der a particular power cap are difficult to predict a priori,
and the level of the imposed power cap may change during
execution, dynamic p-state control may aid in avoiding the
cap.
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Advice to Operators: Draw can exceed cap and appro-
priate benchmarking.

Our work also demonstrates that the capping mechanisms
of the XC40 cannot be solely relied on to ensure draw stays
below a set cap. For many workloads, power exceeded the set
cap for nearly half of the application’s execution. Therefore,
additional mechanisms must be put in place if a hard power
cap limit is needed. Additionally, our work shows that the
behavior of HPCG when running under power control mech-
anisms has key similarities to the production applications we
evaluated, while HPL does not. This suggests HPCG may
be a better choice for calibrating the power management
mechanisms of future systems.
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